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Learning to Rank applies machine learning to relevance ranking. The Elasticsearch Learning to Rank plugin (Elastic-
search LTR) gives you tools to train and use ranking models in Elasticsearch. This plugin powers search at places like
Wikimedia Foundation and Snagajob.
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CHAPTER 1

Get started

• Want a quickstart? Check out the demo in hello-ltr.

• Brand new to learning to rank? head to Core Concepts.

• Otherwise, start with How does the plugin fit in?
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CHAPTER 2

Installing

Pre-built versions can be found here. Want a build for an ES version? Follow the instructions in the README for
building or create an issue. Once you’ve found a version compatible with your Elasticsearch, you’d run a command
such as:

./bin/elasticsearch-plugin install \
https://github.com/o19s/elasticsearch-learning-to-rank/releases/download/v1.5.4-es7.
→˓11.2/ltr-plugin-v1.5.4-es7.11.2.zip

(It’s expected you’ll confirm some security exceptions, you can pass -b to elasticsearch-plugin to automatically install)

Are you using x-pack security in your cluster? we got you covered, check On XPack Support (Security) for specific
configuration details.

5

https://github.com/o19s/elasticsearch-learning-to-rank/releases
https://github.com/o19s/elasticsearch-learning-to-rank#development
https://github.com/o19s/elasticsearch-learning-to-rank#development
https://github.com/o19s/elasticsearch-learning-to-rank/issues
https://www.elastic.co/products/x-pack/security


Elasticsearch Learning to Rank Documentation

6 Chapter 2. Installing



CHAPTER 3

HEEELP!

The plugin and guide was built by the search relevance consultants at OpenSource Connections in partnership with the
Wikimedia Foundation and Snagajob Engineering. Please contact OpenSource Connections or create an issue if you
have any questions or feedback.
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CHAPTER 4

Contents

4.1 Core Concepts

Welcome! You’re here if you’re interested in adding machine learning ranking capabilities to your Elasticsearch
system. This guidebook is intended for Elasticsearch developers and data scientists.

4.1.1 What is Learning to Rank?

Learning to Rank (LTR) applies machine learning to search relevance ranking. How does relevance ranking differ
from other machine learning problems? Regression is one classic machine learning problem. In regression, you’re
attempting to predict a variable (such as a stock price) as a function of known information (such as number of company
employees, the company’s revenue, etc). In these cases, you’re building a function, say f, that can take what’s known
(numEmployees, revenue), and have f output an approximate stock price.

Classification is another machine learning problem. With classification, our function f, would classify our company
into several categories. For example, profitable or not profitable. Or perhaps whether or not the company is evading
taxes.

In Learning to Rank, the function f we want to learn does not make a direct prediction. Rather it’s used for ranking
documents. We want a function f that comes as close as possible to our user’s sense of the ideal ordering of documents
dependent on a query. The value output by f itself has no meaning (it’s not a stock price or a category). It’s more a
prediction of a users’ sense of the relative usefulnes of a document given a query.

Here, we’ll briefly walk through the 10,000 meter view of Learning to Rank. For more information, we recommend
blog articles How is Search Different From Other Machine Learning Problems? and What is Learning to Rank?.

4.1.2 Judgments: expression of the ideal ordering

Judgment lists, sometimes referred to as “golden sets” grade individual search results for a keyword search. For
example, our demo uses TheMovieDB. When users search for “Rambo” we can indicate which movies ought to come
back for “Rambo” based on our user’s expectations of search.

For example, we know these movies are very relevant:

9
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• First Blood

• Rambo

We know these sequels are fairly relevant, but not exactly relevant:

• Rambo III

• Rambo First Blood, Part II

Some movies that star Sylvester Stallone are only tangentially relevant:

• Rocky

• Cobra

And of course many movies are not even close:

• Bambi

• First Daughter

Judgment lists apply “grades” to documents for a keyword, this helps establish the ideal ordering for a given keyword.
For example, if we grade documents from 0-4, where 4 is exactly relevant. The above would turn into the judgment
list:

grade,keywords,movie
4,Rambo,First Blood # Exactly Relevant
4,Rambo,Rambo
3,Rambo,Rambo III # Fairly Relevant
3,Rambo,Rambo First Blood Part II
2,Rambo,Rocky # Tangentially Relevant
2,Rambo,Cobra
0,Rambo,Bambi # Not even close...
0,Rambo,First Daughter

A search system that approximates this ordering for the search query “Rambo”, and all our other test queries, can said
to be performing well. Metrics such as NDCG and ERR evaluate a query’s actual ordering vs the ideal judgment list.

Our ranking function f needs to rank search results as close as possible to our judgment lists. We want to maximize
quality metrics such as ERR or NDCG over the broadest number of queries in our training set. When we do this, with
accurate judgments, we work to return results listings that will be maximally useful to users.

4.1.3 Features: the raw material of relevance

Above in the example of a stock market predictor, our ranking function f used variables such as the number of em-
ployees, revenue, etc to arrive at a predicted stock price. These are features of the company. Here our ranking function
must do the same: using features that describe the document, the query, or some relationship between the document
and the query (such as query keyword’s TF*IDF score in a field).

Features for movies, for example, might include:

• Whether/how much the search keywords match the title field (let’s call this titleScore)

• Whether/how much the search keywords match the description field (descScore)

• The popularity of the movie (popularity)

• The rating of the movie (rating)

• How many keywords are used during search? (numKeywords)

10 Chapter 4. Contents
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Our ranking function then becomes f(titleScore, descScore, popularity, rating,
numKeywords). We hope whatever method we use to create a ranking function can utilize these features to
maximize the likelihood of search results being useful for users. For example, it seems intuitive in the “Rambo” use
case that titleScore matters quite a bit. But one top movie “First Blood” probably only mentions the keyword Rambo
in the description. So in this case descScore comes into play. Also popularity/rating might help determine which
movies are “sequels” and which are the originals. We might learn this feature doesn’t work well in this regard, and
introduce a new feature isSequel that our ranking function could use to make better ranking decisions.

Selecting and experimenting with features is a core piece of learning to rank. Good judgments with poor features
that don’t help predict patterns in the predicted grades and won’t create a good search experience. Just like any other
machine learning problem: garbage in-garbage out!

For more on the art of creating features for search, check out the book Relevant Search by Doug Turnbull and John
Berryman.

4.1.4 Logging features: completing the training set

With a set of features we want to use, we need to annotate the judgment list above with values of each feature. This
data will be used once training commences.

In other words, we need to transfer:

grade,keywords,movie
4,Rambo,First Blood
4,Rambo,Rambo
3,Rambo,Rambo III
...

into:

grade,keywords,movie,titleScore,descScore,popularity,...
4,Rambo,First Blood,0.0,21.5,100,...
4,Rambo,Rambo,42.5,21.5,95,...
3,Rambo,Rambo III,53.1,40.1,50,...

(here titleScore is the relevance score of “Rambo” for title field in document “First Blood”, and so on)

Many learning to rank models are familiar with a file format introduced by SVM Rank, an early learning to rank
method. Queries are given ids, and the actual document identifier can be removed for the training process. Features in
this file format are labeled with ordinals starting at 1. For the above example, we’d have the file format:

4 qid:1 1:0.0 2:21.5 3:100,...
4 qid:1 1:42.5 2:21.5 3:95,...
3 qid:1 1:53.1 2:40.1 3:50,...
...

In actual systems, you might log these values after the fact, gathering them to annotate a judgment list with feature
values. In others the judgment list might come from user analytics, so it may be logged as the user interacts with the
search application. More on this when we cover it in Logging Feature Scores.

With judgments and features in place, the next decision is to arrive at the ranking function. There’s a number of models
available for ranking, with their own intricate pros and cons. Each one attempts to use the features to minimize the
error in the ranking function. Each has its own notion of what “error” means in a ranking system. (for more read this
blog article)

Generally speaking there’s a couple of families of models:

4.1. Core Concepts 11
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• Tree-based models (LambdaMART, MART, Random Forests): These models tend to be most accurate in gen-
eral. They’re large and complex models that can be fairly expensive to train. RankLib and xgboost both focus
on tree-based models.

• SVM based models (SVMRank): Less accurate, but cheap to train. See SVMRank.

• Linear models: Performing a basic linear regression over the judgment list. Tends to not be useful outside of toy
examples. See this blog article

As with any technology, model selection can be as much about what a team has experience with, not just with what
performs best.

4.1.5 Testing: is our model any good?

Our judgment lists can’t cover every user query our model will encounter out in the wild. So it’s important to throw our
model curveballs, to see how well it can “think for itself.” Or as machine learning folks say: can the model generalize
beyond the training data? A model that cannot generalize beyond training data is overfit to the training data, and not
as useful.

To avoid overfitting, you hide some of your judgment lists from the training process. You then use these to test your
model. This side data set is known as the “test set.” When evaluating models you’ll hear about statistics such as
“test NDCG” vs “training NDCG.” The former reflects how your model will perform against scenarios it hasn’t seen
before. You hope as you train, your test search quality metrics continue to reflect high quality search. Further: after
you deploy a model, you’ll want to try out newer/more recent judgment lists to see if your model might be overfit to
seasonal/temporal situations.

4.1.6 Real World Concerns

Now that you’re oriented, the rest of this guide builds on this context to point out how to use the learning to rank
plugin. But before we move on, we want to point out some crucial decisions everyone encounters in building learning
to rank systems. We invite you to watch a talk with Doug Turnbull and Jason Kowalewski where the painful lessons
of real learning to rank systems are brought out.

• How do you get accurate judgment lists that reflect your users real sense of search quality?

• What metrics best measure whether search results are useful to users?

• What infrastructure do you need to collect and log user behavior and features?

• How will you detect when/whether your model needs to be retrained?

• How will you A/B test your model vs your current solution? What KPIs will determine success in your search
system.

Of course, please don’t hesitate to seek out the services of OpenSource Connection
<http://opensourceconnections.com/services>, sponsors of this plugin, as we work with organizations to explore
these issues.

Next up, see how exactly this plugin’s functionality fits into a learning to rank system: How does the plugin fit in?.

4.2 How does the plugin fit in?

In Core Concepts we mentioned a couple of activities you undertake when implementing learning to rank:

1. Judgment List Development

2. Feature Engineering
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https://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/dmlc/xgboost
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://opensourceconnections.com/blog/2017/04/01/learning-to-rank-linear-models/
https://www.youtube.com/watch?v=JqqtWfZQUTU&list=PLq-odUc2x7i-9Nijx-WfoRMoAfHC9XzTt&index=5


Elasticsearch Learning to Rank Documentation

3. Logging features into the judgment list to create a training set

4. Training and testing models

5. Deploying and using models when searching

How does Elasticsearch LTR fit into this process?

4.2.1 What the plugin does

This plugin gives you building blocks to develop and use learning to rank models. It lets you develop query-dependent
features and store them in Elasticsearch. After storing a set of features, you can log them for documents returned in
search results to aid in offline model development.

Then other tools take over. With a logged set of features for documents, you join data with your judgment lists you’ve
developed on your own. You’ve now got a training set you can use to test/train ranking models. Using of a tool like
Ranklib or XGboost, you’ll hopefully arrive at a satisfactory model.

With a ranking model, you turn back to the plugin. You upload the model and give it a name. The model is associated
with the set of features used to generate the training data. You can then search with the model, using a custom
Elasticsearch Query DSL primitive that executes the model. Hopefully this lets you deliver better search to users!

4.2.2 What the plugin is NOT

The plugin does not help with judgment list creation. This is work you must do and can be very domain specific.
Wikimedia Foundation wrote a great article on how they arrive at judgment lists for people searching articles. Other
domains such as e-commerce might be more conversion focused. Yet others might involve human relevance judges –
either experts at your company or mechanical turk.

The plugin does not train or test models. This also happens offline in tools appropriate to the task. Instead the plugin
uses models generated by XGboost and Ranklib libraries. Training and testing models is CPU intensive task that,
involving data scientist supervision and offline testing. Most organizations want some data science supervision on
model development. And you would not want this running in your production Elasticsearch cluster!

The rest of this guide is dedicated to walking you through how the plugin works to get you there. Continue on to
Working with Features.

4.3 Working with Features

In Core Concepts , we mentioned the main roles you undertake building a learning to rank system. In How does the
plugin fit in? we discussed at a high level what this plugin does to help you use Elasticsearch as a learning to rank
system.

This section covers the functionality built into the Elasticsearch LTR plugin to build & upload features with the plugin.

4.3.1 What is a feature in Elasticsearch LTR?

Elasticsearch LTR features correspond to Elasticsearch queries. The score of an Elasticsearch query, when run using
the user’s search terms (and other parameters), are the values you use in your training set.

Obvious features might include traditional search queries, like a simple “match” query on title:

4.3. Working with Features 13
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{
"query": {

"match": {
"title": "{{keywords}}"

}
}

}

Of course, properties of documents such as popularity can also be a feature. Function score queries can help access
these values. For example, to access the average user rating of a movie:

{
"query": {

"function_score": {
"functions": {

"field": "vote_average"
},
"query": {

"match_all": {}
}

}
}

}

One could also imagine a query based on the user’s location:

{
"query": {

"bool" : {
"must" : {

"match_all" : {}
},
"filter" : {

"geo_distance" : {
"distance" : "200km",
"pin.location" : {

"lat" : "{{users_lat}}",
"lon" : "{{users_lon}}"

}
}

}
}

}
}

Similar to how you would develop queries like these to manually improve search relevance, the ranking function f
you’re training also combines these queries mathematically to arrive at a relevance score.

4.3.2 Features are Mustache Templated Elasticsearch Queries

You’ll notice the {{keywords}}, {{users_lat}}, and {{users_lon}} above. This syntax is the mustache
templating system used in other parts of Elasticsearch. This lets you inject various query or user-specific variables into
the search template. Perhaps information about the user for personalization? Or the location of the searcher’s phone?

For now, we’ll simply focus on typical keyword searches.

14 Chapter 4. Contents
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4.3.3 Uploading and Naming Features

Elasticsearch LTR gives you an interface for creating and manipulating features. Once created, then you can have
access to a set of feature for logging. Logged features when combined with your judgment list, can be trained into a
model. Finally, that model can then be uploaded to Elasticsearch LTR and executed as a search.

Let’s look how to work with sets of features.

4.3.4 Initialize the default feature store

A feature store corresponds to an Elasticsearch index used to store metadata about the features and models. Typically,
one feature store corresponds to a major search site/implementation. For example, wikipedia vs wikitravel

For most use cases, you can simply get by with the single, default feature store and never think about feature stores
ever again. This needs to be initialized the first time you use Elasticsearch Learning to Rank:

PUT _ltr

You can restart from scratch by deleting the default feature store:

DELETE _ltr

(WARNING this will blow everything away, use with caution!)

In the rest of this guide, we’ll work with the default feature store.

4.3.5 Features and feature sets

Feature sets are where the action really happens in Elasticsearch LTR.

A feature set is a set of features that has been grouped together for logging & model evaluation. You’ll refer to feature
sets when you want to log multiple feature values for offline training. You’ll also create a model from a feature set,
copying the feature set into model.

4.3.6 Create a feature set

You can create a feature set simply by using a POST. To create it, you give a feature set a name and optionally a list of
features:

POST _ltr/_featureset/more_movie_features
{

"featureset": {
"features": [

{
"name": "title_query",
"params": [

"keywords"
],
"template_language": "mustache",
"template": {

"match": {
"title": "{{keywords}}"

}
}

},

(continues on next page)
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(continued from previous page)

{
"name": "title_query_boost",
"params": [

"some_multiplier"
],
"template_language": "derived_expression",
"template": "title_query * some_multiplier"

},
{

"name": "custom_title_query_boost",
"params": [

"some_multiplier"
],
"template_language": "script_feature",
"template": {

"lang": "painless",
"source": "params.feature_vector.get('title_query') *

→˓(long)params.some_multiplier",
"params": {

"some_multiplier": "some_multiplier"
}

}
}

]
}

}

4.3.7 Feature set CRUD

Fetching a feature set works as you’d expect:

GET _ltr/_featureset/more_movie_features

You can list all your feature sets:

GET _ltr/_featureset

Or filter by prefix in case you have many feature sets:

GET _ltr/_featureset?prefix=mor

You can also delete a featureset to start over:

DELETE _ltr/_featureset/more_movie_features

4.3.8 Validating features

When adding features, we recommend sanity checking that the features work as expected. Adding a “validation”
block to your feature creation let’s Elasticsearch LTR run the query before adding it. If you don’t run this validation,
you may find out only much later that the query, while valid JSON, was a malformed Elasticsearch query. You can
imagine, batching dozens of features to log, only to have one of them fail in production can be quite annoying!

To run validation, you simply specify test parameters and a test index to run:

16 Chapter 4. Contents
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"validation": {
"params": {

"keywords": "rambo"
},
"index": "tmdb"

},

Place this alongside the feature set. You’ll see below we have a malformed match query. The example below should
return an error that validation failed. An indicator you should take a closer look at the query:

{
"validation": {

"params": {
"keywords": "rambo"

},
"index": "tmdb"

},
"featureset": {

"features": [
{

"name": "title_query",
"params": [

"keywords"
],
"template_language": "mustache",
"template": {

"match": {
"title": "{{keywords}}"

}
}

}
]

}
}

4.3.9 Adding to an existing feature set

Of course you may not know upfront what features could be useful. You may wish to append a new feature later for
logging and model evaluation. For example, creating the user_rating feature, we could create it using the feature set
append API, like below:

POST /_ltr/_featureset/my_featureset/_addfeatures
{

"features": [{
"name": "user_rating",
"params": [],
"template_language": "mustache",
"template" : {

"function_score": {
"functions": {

"field": "vote_average"
},
"query": {

"match_all": {}
}

(continues on next page)

4.3. Working with Features 17
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(continued from previous page)

}
}

}]
}

4.3.10 Feature Names are Unique

Because some model training libraries refer to features by name, Elasticsearch LTR enforces unique names for each
features. In the example above, we could not add a new user_rating feature without creating an error.

4.3.11 Feature Sets are Lists

You’ll notice we appended to the feature set. Feature sets perhaps ought to be really called “lists.” Each feature has
an ordinal (its place in the list) in addition to a name. Some LTR training applications, such as Ranklib, refer to a
feature by ordinal (the “1st” feature, the “2nd” feature). Others more conveniently refer to the name. So you may need
both/either. You’ll see that when features are logged, they give you a list of features back to preserve the ordinal.

4.3.12 But wait there’s more

Feature engineering is a complex part of Elasticsearch Learning to Rank, and additional features (such as features that
can be derived from other features) are listed in Advanced Functionality.

Next-up, we’ll talk about some specific use cases you’ll run into when Feature Engineering.

4.4 Feature Engineering

You’ve seen how to add features to feature sets. We want to show you how to address common feature engineering
tasks that come up when developing a learning to rank solution.

4.4.1 Getting Raw Term Statistics

Many learning to rank solutions use raw term statistics in training. For example, the total term frequency for
a term, the document frequency, and other statistics. Luckily, Elasticsearch LTR comes with a query primitive,
match_explorer, that extracts these statistics for you for a set of terms. In its simplest form, match_explorer
lets you specify a statistic you’re interested in and a match you’d like to explore. For example:

POST tmdb/_search
{

"query": {
"match_explorer": {

"type": "max_raw_df",
"query": {

"match": {
"title": "rambo rocky"

}
}

}
}

}

18 Chapter 4. Contents
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This query returns the highest document frequency between the two terms.

A large number of statistics are available. The type parameter can be prepended with the operation to be performed
across terms for the statistic max, min, sum, and stddev.

The statistics available include:

• raw_df – the direct document frequency for a term. So if rambo occurs in 3 movie titles, this is 3.

• classic_idf – the IDF calculation of the classic similarity log((NUM_DOCS+1)/(raw_df+1)) + 1.

• raw_ttf – the total term frequency for the term across the index. So if rambo is mentioned a total of 100 times
in the overview field, this would be 100.

• raw_tf – the term frequency for a document. So if rambo occurs in 3 in movie synopsis in same document,
this is 3.

Putting the operation and the statistic together, you can see some examples. To get stddev of classic_idf, you would
write stddev_classic_idf. To get the minimum total term frequency, you’d write min_raw_ttf.

Term position statistics

The type parameter can be prepended with the operation to be performed across term position for the statistic min,
max and avg. For any of the cases, 0 will be returned if there isn’t any occurrence of the terms in the document.

The statistics available include, e.g. using the query “dance monkey” we have:

• min_raw_tp – return the minimum occurrence, i.e. the first one, of any term on the query. So if dance occurs
at positions [2, 5 ,9], and monkey occurs at positions [1, 4] in a text in the same document, the minimum is 1.

• max_raw_tp – return the maximum occurrence, i.e. the last one, of any term on the query. So if dance occurs
at positions [2, 5 ,9] and monkey occurs at positions [1, 4] in a text in the same document, the maximum is 9.

• avg_raw_tp – return the average of all occurrence of the terms on the query. So if dance occurs at positions
[2, 5 ,9] its average is 5.33, and monkey has average 2.5 for positions [1, 4]. So the returned average is 3.91,
computed by (5.33 + 2.5)/2.

Finally a special stat exists for just counting the number of search terms. That stat is unique_terms_count.

4.4.2 Document-specific features

Another common case in learning to rank is features such as popularity or recency, tied only to the document. Elastic-
search’s function_score query has the functionality you need to pull this data out. You already saw an example
when adding features in the last section:

{
"query": {

"function_score": {
"functions": [{

"field_value_factor": {
"field": "vote_average",
"missing": 0

}
}],
"query": {

"match_all": {}
}

}
}

}

The score for this query corresponds to the value of the vote_average field.

4.4. Feature Engineering 19
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4.4.3 Your index may drift

If you have an index that updates regularly, trends that held true today, may not hold true tomorrow! On an e-commerce
store, sandals might be very popular in the summer, but impossible to find in the winter. Features that drive purchases
for one time period, may not hold true for another. It’s always a good idea to monitor your model’s performance
regularly, retrain as needed.

Next up, we discuss the all-important task of logging features in Logging Feature Scores.

4.5 Logging Feature Scores

To train a model, you need to log feature values. This is a major component of the learning to rank plugin: as users
search, we log feature values from our feature sets so we can then train. Then we can discover models that work well
to predict relevance with that set of features.

4.5.1 Sltr Query

The sltr query is the primary way features are run and models are evaluated. When logging, we’ll just use an sltr
query for executing every feature-query to retrieve the scores of features.

For the sake of discussing logging, let’s say we created a feature set like so that works with the TMDB data set from
the demo:

PUT _ltr/_featureset/more_movie_features
{

"name": "more_movie_features",
"features": [

{
"name": "body_query",
"params": [

"keywords"
],

"template": {
"match": {

"overview": "{{keywords}}"
}

}
},
{

"name": "title_query",
"params": [

"keywords"
],
"template": {

"match": {
"title": "{{keywords}}"

}
}

}
]

}

Next, let’s see how to log this feature set in a couple common use cases.
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4.5.2 Joining feature values with a judgment list

Let’s assume, in the simplest case, we have a judgment list already. We simply want to join feature values for each
keyword/document pair to form a complete training set. For example, assume we have experts in our company, and
they’ve arrived at this judgment list:

grade,keywords,docId
4,rambo,7555
3,rambo,1370
3,rambo,1369
4,rocky,4241

We want to get feature values for all documents that have judgment for each search term, one search term at a time. If
we start with “rambo”, we can create a filter for the ids associated with the “rambo” search:

{
"filter": [

{"terms": {
"_id": ["7555", "1370", "1369"]

}}
]

}

We also need to point Elasticsearch LTR at the features to log. To do this we use the sltr Elasticsearch query, included
with Elasticsearch LTR. We construct this query such that it:

• Has a _name (the Elasticsearch named queries feature) to refer to it

• Refers to the featureset we created above more_movie_features

• Passes our search keywords “rambo” and whatever other parameters our features need

{
"sltr": {

"_name": "logged_featureset",
"featureset": "more_movie_features",
"params": {

"keywords": "rambo"
}

}
}

Note: In Searching with LTR you’ll see us use sltr for executing a model. Here we’re just using it as a hook to point
Elasticsearch LTR at the feature set we want to log.

You might be thinking, wait if we inject sltr query into the Elasticsearch query, won’t it influence the score? The
sneaky trick is to inject it as a filter. As a filter that doesn’t actually filter anything, but injects our feature-logging only
sltr query into our Elasticsearch query:

{"query": {
"bool": {

"filter": [
{

"terms": {
"_id": ["7555", "1370", "1369"]

(continues on next page)
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}
},
{

"sltr": {
"_name": "logged_featureset",
"featureset": "more_movie_features",
"params": {

"keywords": "rambo"
}

}}

]
}

}}

Running this, you’ll see the three hits you’d expect. The next step is to turn on feature logging, referring to the sltr
query we want to log.

This is what the logging extension gives you. It finds an Elasticsearch sltr query, pulls runs the feature set’s queries,
scores each document, then returns those as computed fields on each document:

"ext": {
"ltr_log": {

"log_specs": {
"name": "log_entry1",
"named_query": "logged_featureset"

}
}

}

This log extension comes with several arguments:

• name: The name of this log entry to fetch from each document

• named_query the named query which corresponds to an sltr query

• rescore_index: if sltr is in a rescore phase, this is the index of the query in the rescore list

• missing_as_zero: produce a 0 for missing features (when the feature does not match) (defaults to ‘false‘)

Note: Either named_query or rescore_index must be set so that logging can locate an sltr query for logging
either in the normal query phase or during rescoring.

Finally the full request:

POST tmdb/_search
{

"query": {
"bool": {

"filter": [
{

"terms": {
"_id": ["7555", "1370", "1369"]

}
},
{

"sltr": {
(continues on next page)
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"_name": "logged_featureset",
"featureset": "more_movie_features",
"params": {

"keywords": "rambo"
}

}}
]

}
},
"ext": {

"ltr_log": {
"log_specs": {

"name": "log_entry1",
"named_query": "logged_featureset"

}
}

}
}

And now each document contains a log entry:

{
"_index": "tmdb",
"_type": "movie",
"_id": "1370",
"_score": 20.291,
"_source": {

...
},
"fields": {

"_ltrlog": [
{

"log_entry1": [
{"name": "title_query"
"value": 9.510193},

{"name": "body_query
"value": 10.7808075}

]
}

]
},
"matched_queries": [

"logged_featureset"
]

}

Now you can join your judgment list with feature values to produce a training set! For the line that corresponds to
document 1370 for keywords “Rambo” we can now add:

4 qid:1 1:9.510193 2:10.7808075

Rinse and repeat for all your queries.

Note: For large judgment lists, batch up logging for multiple queries, use Elasticsearch’s bulk search capabilities.
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4.5.3 Logging values for a live feature set

Let’s say you’re running in production with a model being executed in an sltr query. We’ll get more into model
execution in Searching with LTR. But for our purposes, a sneak peak, a live model might look something like:

POST tmdb/_search
{

"query": {
"match": {

"_all": "rambo"
}

},
"rescore": {

"query": {
"rescore_query": {

"sltr": {
"params": {

"keywords": "rambo"
},
"model": "my_model"

}
}

}
}

}

Simply applying the correct logging spec to refer to the sltr query does the trick to let us log feature values for our
query:

"ext": {
"ltr_log": {

"log_specs": {
"name": "log_entry1",
"rescore_index": 0

}
}

}

This will log features to the Elasticsearch response, giving you an ability to retrain a model with the same featureset
later.

4.5.4 Modifying an existing feature set and logging

Feature sets can be appended to. As mentioned in Working with Features, you saw if you want to incorporate a new
feature, such as user_rating, we can append that query to our featureset more_movie_features:

PUT _ltr/_feature/user_rating/_addfeatures
{

"features": [
"name": "user_rating",
"params": [],
"template_language": "mustache",
"template" : {

"function_score": {
"functions": {

"field": "vote_average"

(continues on next page)
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},
"query": {

"match_all": {}
}

}
}

]
}

Then finally, when we log as the examples above, we’ll have our new feature in our output:

{"log_entry1": [
{"name": "title_query"
"value": 9.510193},
{"name": "body_query
"value": 10.7808075},
{"name": "user_rating",
"value": 7.8}

]}

4.5.5 Logging values for a proposed feature set

You might create a completely new feature set for experimental purposes. For example, let’s say you create a brand
new feature set, other_movie_features:

We can log other_movie_features alongside a live production more_movie_features by simply appending it as another
filter, just like the first example above:

POST tmdb/_search
{
"query": {

"bool": {
"filter": [

{ "sltr": {
"_name": "logged_featureset",
"featureset": "other_movie_features",
"params": {

"keywords": "rambo"
}

}},
{"match": {

"_all": "rambo"
}}

]
}

},
"rescore": {

"query": {
"rescore_query": {

"sltr": {
"params": {

"keywords": "rambo"
},
"model": "my_model"

}

(continues on next page)
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}
}

}
}

Continue with as many feature sets as you care to log!

4.5.6 ‘Logging’ serves multiple purposes

With the tour done, it’s worth point out real-life feature logging scenarios to think through.

First, you might develop judgment lists from user analytics. You want to have the exact value of a feature at the precise
time a user interaction happened. If they clicked, you want to know the recency, title score, and every other value at
that exact moment. This way you can study later what correlated with relevance when training. To do this, you may
build a large comprehensive feature set for later experimentation.

Second, you may simply want to keep your models up to date with a shifting index. Trends come and go, and models
lose their effectiveness. You may have A/B testing in place, or monitoring business metrics, and you notice gradual
degredation in model performance. In these cases, “logging” is used to retrain a model you’re already relatively
confident in.

Third, there’s the “logging” that happens in model development. You may have a judgment list, but want to iterate
heavily with a local copy of Elasticsearch. You’re heavily, experimenting with new features, scrapping and adding
to feature sets. You of course are a bit out of sync with the live index, but you do your best to keep up. Once
you’ve arrived at a set of model parameters that you’re happy with, you can train with production data and confirm the
performance is still satisfactory.

Next up, let’s briefly talk about training a model in Uploading A Trained Model in tools outside Elasticsearch LTR.

4.6 Uploading A Trained Model

Training models occurs outside Elasticsearch LTR. You use the plugin to log features (as mentioned in Logging Feature
Scores). Then with whichever technology you choose, you train a ranking model. You upload a model to Elasticsearch
LTR in the available serialization formats (ranklib, xgboost, and others). Let’s first urst talk briefly about training in
supported technologies (though not at all an extensive overview) and dig into uploading a model.

4.6.1 Ranklib training

We provide two demos for training a model. A fully-fledged Ranklib Demo uses Ranklib to train a model from
Elasticsearch queries. You can see how features are logged and how models are trained . In particular, you’ll note that
logging create a ranklib consumable judgment file that looks like:

4 qid:1 1:9.8376875 2:12.318446 # 7555 rambo
3 qid:1 1:10.7808075 2:9.510193 # 1370 rambo
3 qid:1 1:10.7808075 2:6.8449354 # 1369 rambo
3 qid:1 1:10.7808075 2:0.0 # 1368 rambo

Here for query id 1 (Rambo) we’ve logged features 1 (a title TF*IDF score) and feature 2 (a description TF*IDF score)
for a set of documents. In train.py you’ll see how we call Ranklib to train one of it’s supported models on this line:

cmd = "java -jar RankLib-2.8.jar -ranker %s -train%rs -save %s -frate 1.0" %
→˓(whichModel, judgmentsWithFeaturesFile, modelOutput)
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Our “judgmentsWithFeatureFile” is the input to RankLib. Other parameters are passed, which you can read about in
Ranklib’s documetration.

Ranklib will output a model in it’s own seiralization format. For example a LambdaMART model is an ensemble of
regression trees. It looks like:

## LambdaMART
## No. of trees = 1000
## No. of leaves = 10
## No. of threshold candidates = 256
## Learning rate = 0.1
## Stop early = 100

<ensemble>
<tree id="1" weight="0.1">

<split>
<feature> 2 </feature>
...

Notice how each tree examines the value of features, makes a decision based on the value of a feature, then ulti-
mately outputs the relevance score. You’ll note features are referred to by ordinal, starting by “1” with Ranklib (this
corresponds to the 0th feature in your feature set). Ranklib does not use feature names when training.

4.6.2 XGBoost Example

There’s also a rexample of how to train a model using XGBoost. Examining this demo, you’ll see the difference in
how Ranklib is executed vs XGBoost. XGBoost will output a serialization format for gradient boosted decision tree
that looks like:

[ { "nodeid": 0, "depth": 0, "split": "tmdb_multi", "split_condition": 11.2009, "yes
→˓": 1, "no": 2, "missing": 1, "children": [

{ "nodeid": 1, "depth": 1, "split": "tmdb_title", "split_condition": 2.20631, "yes
→˓": 3, "no": 4, "missing": 3, "children": [

{ "nodeid": 3, "leaf": -0.03125 },
...

4.6.3 XGBoost Parameters

Additional parameters can optionally be passed for an XGBoost model. This can be done by specifying the definition
as an object, with the decision trees as the ‘splits’ field. See the example below.

Currently supported parameters:

objective - Defines the model learning objective as specified in the XGBoost documentation. This parameter can
transform the final model prediction. Using logistic objectives applies a sigmoid normalization.

Currently supported values: ‘binary:logistic’, ‘binary:logitraw’, ‘rank:pairwise’, ‘reg:linear’, ‘reg:logistic’

4.6.4 Simple linear models

Many types of models simply output linear weights of each feature such as linear SVM. The LTR model supports
simple linear weights for each features, such as those learned from an SVM model or linear regression:
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{
"title_query" : 0.3,
"body_query" : 0.5,
"recency" : 0.1

}

4.6.5 Feature normalization

Feature Normalization transforms feature values to a more consistent range (like 0 to 1 or -1 to 1) at training time to
better understand their relative impact. Some models, especially linear ones (like SVMRank), rely on normalization
to work correctly.

4.6.6 Uploading a model

Once you have a model, you’ll want to use it for search. You’ll need to upload it to Elasticsearch LTR. Models are
uploaded specifying the following arguments

• The feature set that was trained against

• The type of model (such as ranklib or xgboost)

• The model contents

Uploading a Ranklib model trained against more_movie_features looks like:

POST _ltr/_featureset/more_movie_features/_createmodel
{

"model": {
"name": "my_ranklib_model",
"model": {

"type": "model/ranklib",
"definition": "## LambdaMART\n

## No. of trees = 1000
## No. of leaves = 10
## No. of threshold candidates = 256
## Learning rate = 0.1
## Stop early = 100

<ensemble>
<tree id="1" weight="0.1">

<split>
<feature> 2 </feature>
...

"
}

}
}

Or an xgboost model:

POST _ltr/_featureset/more_movie_features/_createmodel
{

"model": {
"name": "my_xgboost_model",
"model": {

(continues on next page)
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"type": "model/xgboost+json",
"definition": "[ { \"nodeid\": 0, \"depth\": 0, \"split\": \"tmdb_multi\

→˓", \"split_condition\": 11.2009, \"yes\": 1, \"no\": 2, \"missing\": 1, \"children\
→˓": [

{ \"nodeid\": 1, \"depth\": 1, \"split\": \"tmdb_
→˓title\", \"split_condition\": 2.20631, \"yes\": 3, \"no\": 4, \"missing\": 3, \
→˓"children\": [

{ \"nodeid\": 3, \"leaf\": -0.03125 },
..."

}
}

}

Or an xgboost model with parameters:

POST _ltr/_featureset/more_movie_features/_createmodel
{

"model": {
"name": "my_xgboost_model",
"model": {

"type": "model/xgboost+json",
"definition": "{

\"objective\": \"reg:logistic\",
\"splits\": [ { \"nodeid\": 0, \"depth\": 0, \"split\":

→˓\"tmdb_multi\", \"split_condition\": 11.2009, \"yes\": 1, \"no\": 2, \"missing\": 1,
→˓ \"children\": [

{ \"nodeid\": 1, \"depth\": 1, \"split\
→˓": \"tmdb_title\", \"split_condition\": 2.20631, \"yes\": 3, \"no\": 4, \"missing\
→˓": 3, \"children\": [

{ \"nodeid\": 3, \"leaf\": -0.03125 },
...

]
}"

}
}

}

Or a simple linear model:

POST _ltr/_featureset/more_movie_features/_createmodel
{

"model": {
"name": "my_linear_model",
"model": {

"type": "model/linear",
"definition": """

{
"title_query" : 0.3,
"body_query" : 0.5,
"recency" : 0.1

}
"""

}
}

}
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Creating a model with Feature Normalization

We can ask that features be normalized prior to evaluating the model. Elasticsearch Learning to Rank supports min
max and standard feature normalization.

With standard feature normalization, values corresponding to the mean will have a value of 0, one standard deviation
above/below will have a value of -1 and 1 respectively:

POST _ltr/_featureset/more_movie_features/_createmodel
{

"model": {
"name": "my_linear_model",
"model": {

"type": "model/linear",
"feature_normalizers": {

"release_year": {
"standard": {
"mean": 1970,
"standard_deviation": 30

}
}

},
"definition": """

{
"release_year" : 0.3,
"body_query" : 0.5,
"recency" : 0.1

}
"""

}
}

}

Also supported is min-max normalization. Where values at the specified minimum receive 0, at the maximum turn
into 1:

"feature_normalizers": {
"vote_average": {

"min_max": {
"minimum": 0,
"maximum": 10

}
}

}

4.6.7 Models aren’t “owned by” featuresets

Though models are created in reference to a feature set, it’s importnrt to note after creation models are top level entities.
For example, to fetch a model back, you use GET:

GET _ltr/_model/my_linear_model

Similarly, to delete:

DELETE _ltr/_model/my_linear_model

This of course means model names are globally unique across all feature sets.
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The associated features are copied into the model. This is for your safety: modifying the feature set or deleting the
feature set after model creation doesn’t have an impact on a model in production. For example, if we delete the feature
set above:

DELETE _ltr/_featureset/more_movie_features

We can still access and search with “my_linear_model”. The following still accesses the model and it’s associated
features:

GET _ltr/_model/my_linear_model

You can expect a response that includes the features used to create the model (compare this with the
more_movie_features in Logging Feature Scores):

{
"_index": ".ltrstore",
"_type": "store",
"_id": "model-my_linear_model",
"_version": 1,
"found": true,
"_source": {

"name": "my_linear_model",
"type": "model",
"model": {

"name": "my_linear_model",
"feature_set": {

"name": "more_movie_features",
"features": [
{

"name": "body_query",
"params": [

"keywords"
],

"template": {
"match": {

"overview": "{{keywords}}"
}

}
},
{

"name": "title_query",
"params": [

"keywords"
],
"template": {

"match": {
"title": "{{keywords}}"

}
}

}
]}}}

With a model uploaded to Elasticsearch, you’re ready to search! Head to Searching with LTR to see put model into
action.
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4.7 Searching with LTR

Now that you have a model, what can you do with it? As you saw in Logging Feature Scores, the Elasticsearch LTR
plugin comes with the sltr query. This query is also what you use to execute models:

POST tmdb/_search
{

"query": {
"sltr": {

"params": {
"keywords": "rambo"

},
"model": "my_model"

}
}

}

Warning: you almost certainly don’t want to run sltr this way :)

4.7.1 Rescore top N with sltr

In reality you would never want to use the sltr query this way. Why? This model executes on every result in your
index. These models are CPU intensive. You’ll quickly make your Elasticsearch cluster crawl with the query above.

More often, you’ll execute your model on the top N of a baseline relevance query. You can do this using Elasticsearch’s
built in rescore functionality:

POST tmdb/_search
{

"query": {
"match": {

"_all": "rambo"
}

},
"rescore": {

"window_size": 1000,
"query": {

"rescore_query": {
"sltr": {

"params": {
"keywords": "rambo"

},
"model": "my_model"

}
}

}
}

}

Here we execute a query that limits the result set to documents that match “rambo”. All the documents are scored
based on Elasticsearch’s default similarity (BM25). On top of those already reasonably relevant results we apply our
model over the top 1000.

Viola!
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4.7.2 Scoring on a subset of features with sltr (added in 1.0.1-es6.2.4)

Sometimes you might want to execute your query on a subset of the features rather than use all the ones specified in
the model. In this case the features not specified in active_features list will not be scored upon. They will be
marked as missing. You only need to specify the params applicable to the active_features. If you request a
feature name that is not a part of the feature set assigned to that model the query will throw an error.

POST tmdb/_search
{

"query": {
"match": {

"_all": "rambo"
}

},
"rescore": {

"window_size": 1000,
"query": {

"rescore_query": {
"sltr": {

"params": {
"keywords": "rambo"

},
"model": "my_model",
"active_features": ["title_query"]

}
}

}
}

}

Here we apply our model over the top 1000 results but only for the selected features which in this case is title_query

4.7.3 Models! Filters! Even more!

One advantage of having sltr as just another Elasticsearch query is you can mix/match it with business logic and
other. We won’t dive into these examples here, but we want to invite you to think creatively about scenarios, such as

• Filtering out results based on business rules, using Elasticsearch filters before applying the model

• Chaining multiple rescores, perhaps with increasingly sophisticated models

• Rescoring once for relevance (with sltr), and a second time for business concerns

• Forcing “bad” but relevant content out of the rescore window by downboosting it in the baseline query

4.8 On XPack Support (Security)

X-Pack is the collection of extensions provided by elastic to enhance the capabilities of the Elastic Stack with things
such as reporting, monitoring and also security. If you installed x-pack your cluster will now be protected with the
security module, this will also be like this if you are using Elasticsearch through the Elastic Cloud solution.

4.8.1 Setup roles and users.

After installing the plugin, the first thing you will have to do is configure the necessary users and roles to access let
the LTR plugin operate.
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We recommend you to create two separate roles, one for administrative task such as creating the models, updating the
feature sets, etc .. and one to run the queries.

For this configuration, we supose you already have identified, and created two users, one for running queries and
one for doing administrative tasks. If you need help to create the users, we recommend you to check the x-pack api
documentation for user management.

To create two roles, you can do it with these commands:

POST /_xpack/security/role/ltr_admin
{

"cluster": [ "ltr" ],
"indices": [
{

"names": [ ".ltrstore*" ],
"privileges": [ "all" ],

}
]

}

POST /_xpack/security/role/ltr_query
{

"cluster": [ "ltr" ],
"indices": [

{
"names": [ ".ltrstore*" ],
"privileges": [ "read" ],

}
]

}

the first one will allow the users to perform all the operations while the last one will only allow read operations.

Once the roles are defined, the last step will be to attach this roles to existing users, for this documentation we will
suppose two users, ltr_admin and ltr_user. The commands to set the roles are:

POST /_xpack/security/role_mapping/ltr_admins
{

"roles": [ "ltr_admin" ],
"rules": {

"field" : { "username" : [ "ltr_admin01", "ltr_admin02" ] }
},
"metadata" : {

"version" : 1
}

}

POST /_xpack/security/role_mapping/ltr_users
{

"roles": [ "ltr_query" ],
"rules": {

"field" : { "username" : [ "ltr_user01", "ltr_user02" ] }
},
"metadata" : {

"version" : 1
}

}

After this two steps, your plugin will be fully functional in your x-pack protected cluster.
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For more in deep information on how to define roles, we recommend you to check the elastic x-pack api documentation.

4.8.2 Considerations

The read access to models via the sltr query is not strictly gated by x-pack. The access will only be checked if the
model needs to be loaded, however If the model is already in the cache for that node no checks will be performed.
This will generally not have a major security impact, however is important to take into account in case is important for
your use case.

4.9 Advanced Functionality

This section documents some additional functionality you may find useful after you’re comfortable with the primary
capabilities of Elasticsearch LTR.

4.9.1 Reusable Features

In Working with Features we demonstrated creating feature sets by uploading a list of features. Instead of repeating
common features in every feature set, you may want to keep a library of features around.

For example, perhaps a query on the title field is important to many of your feature sets, you can use the feature API
to create a title query:

POST _ltr/_feature/titleSearch
{

"feature":
{

"params": [
"keywords"
],
"template": {
"match": {

"title": "{{keywords}}"
}
}

}
}

As you’d expect, normal CRUD operations apply. You can DELETE a feature:

DELETE _ltr/_feature/titleSearch

And fetch an individual feature:

GET _ltr/_feature/titleSearch

Or look at all your features, optionally filtered by name prefix:

GET /_ltr/_feature?prefix=t

You can create or update a feature set, you can refer to the titleSearch feature:

POST /_ltr/_featureset/my_featureset/_addfeatures/titleSearch

This will place titleSearch at the next ordinal position under “my_feature_set”
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4.9.2 Derived Features

Features that build on top of other features are called derived features. These can be expressed as lucene expressions.
They are recognized by "template_language": "derived_expression". Besides these can also take
in query time variables of type Number as explained in Create a feature set.

Script Features

These are essentially Derived Features, having access to the feature_vector but could be native or painless
elasticsearch scripts rather than lucene expressions. "template_language": "script_feature"" allows
LTR to identify the templated script as a regular elasticsearch script e.g. native, painless, etc.

The custom script has access to the feature_vector via the java Map interface as explained in Create a feature set.

(WARNING script features can cause the performance of your Elasticsearch cluster to degrade, if possible avoid using
these for feature generation if you require your queries to be highly performant)

Script Features Parameters

Script features are essentially native/painless scripts and can accept parameters as per the elasticsearch script docu-
mentation. We can override parameter values and names to scripts within LTR scripts. Priority for parameterization in
increasing order is as follows

• parameter name, value passed in directly to source script but not in params in ltr script. These cannot be
configured at query time.

• parameter name passed in to sltr query and to source script, so the script parameter values can be overridden at
query time.

• ltr script parameter name to native script parameter name indirection. This allows ltr parameter name to be
different from the underlying script parameter name. This allows same native script to be reused as different
features within LTR by specifying different parameter names at query time:

POST _ltr/_featureset/more_movie_features
{

"featureset": {
"features": [

{
"name": "title_query",
"params": [

"keywords"
],
"template_language": "mustache",
"template": {

"match": {
"title": "{{keywords}}"

}
}

},
{

"name": "custom_title_query_boost",
"params": [

"some_multiplier",
"ltr_param_foo"

],
"template_language": "script_feature",

(continues on next page)
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"template": {
"lang": "painless",
"source": "(long)params.default_param * params.feature_vector.

→˓get('title_query') * (long)params.some_multiplier * (long) params.param_foo",
"params": {

"default_param" : 10.0,
"some_multiplier": "some_multiplier",
"extra_script_params": {"ltr_param_foo": "param_foo"}

}
}

}
]

}
}

4.9.3 Multiple Feature Stores

We defined a feature store in Working with Features. A feature store corresponds to an independent LTR system:
features, feature sets, models backed by a single index and cache. A feature store corresponds roughly to a single
search problem, often tied to a single application. For example wikipedia might be backed by one feature store, but
wiktionary would be backed by another. There’s nothing that would be shared between the two.

Should your Elasticsearch cluster back multiple properties, you can use all the capabilities of this guide on named
feature stores, simply by:

PUT _ltr/wikipedia

Then the same API in this guide applies to this feature store, for example to create a feature set:

POST _ltr/wikipedia/_featureset/attempt_1
{

"featureset": {
"features": [

{
"name": "title_query",
"params": [

"keywords"
],
"template_language": "mustache",
"template": {

"match": {
"title": "{{keywords}}"

}
}

}
]

}
}

And of course you can delete a featureset:

DELETE _ltr/wikipedia/_featureset/attempt_1
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4.9.4 Model Caching

The plugin uses an internal cache for compiled models.

Clear the cache for a feature store to force models to be recompiled:

POST /_ltr/_clearcache

Get cluster wide cache statistics for this store:

GET /_ltr/_cachestats

Characteristics of the internal cache can be controlled with these node settings:

# limit cache usage to 12 megabytes (defaults to 10mb or max_heap/10 if lower)
ltr.caches.max_mem: 12mb
# Evict cache entries 10 minutes after insertion (defaults to 1hour, set to 0 to
→˓disable)
ltr.caches.expire_after_write: 10m
# Evict cache entries 10 minutes after access (defaults to 1hour, set to 0 to disable)
ltr.caches.expire_after_read: 10m

4.9.5 Extra Logging

As described in Logging Feature Scores, it is possible to use the logging extension to return the feature values with
each document. For native scripts, it is also possible to return extra arbitrary information with the logged features.

For native scripts, the parameter extra_logging is injected into the script parameters. The parameter value is
a Supplier <Map>, which provides a non-null Map<String,Object> only during the logging fetch phase. Any
values added to this Map will be returned with the logged features:

@Override
public double runAsDouble() {
...

Map<String,Object> extraLoggingMap = ((Supplier<Map<String,Object>>) getParams().
→˓get("extra_logging")).get();

if (extraLoggingMap != null) {
extraLoggingMap.put("extra_float", 10.0f);
extraLoggingMap.put("extra_string", "additional_info");

}
...
}

If (and only if) the extra logging Map is accessed, it will be returned as an additional entry with the logged features:

{
"log_entry1": [

{
"name": "title_query"
"value": 9.510193

},
{

"name": "body_query"
"value": 10.7808075

},
{

(continues on next page)
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"name": "user_rating",
"value": 7.8

},
{

"name": "extra_logging",
"value": {

"extra_float": 10.0,
"extra_string": "additional_info"

}
}

]
}

4.9.6 Feature Score Caching

By default, this plugin calculates feature scores for model inference and for feature score logging separately. For
example, if we write a query as below to rescore top-100 documents then return top-10 among them with feature
scores, this plugin calculates the feature scores on the 100 documents for model inference then calculates again and
logs 10 of them:

POST tmdb/_search
{

"size": 10,
"query": {

"match": {
"_all": "rambo"

}
},
"rescore": {

"window_size" : 100,
"query": {

"rescore_query": {
"sltr": {

"params": {
"keywords": "rambo"

},
"model": "my_model"

}
}

}
},
"ext": {

"ltr_log": {
"log_specs": {

"name": "log_entry1",
"rescore_index": 0

}
}

}
}

In some environments, it may be faster to cache the feature scores for model inference and just reuse them for logging.
This plugin supports this behavior. To enable the feature score caching, add cache: "true" flag to the LTR
query which is the target of feature score logging:
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"sltr": {
"cache": true,
"params": {

"keywords": "rambo"
},
"model": "my_model"

}

4.9.7 Stats

The stats API gives the overall plugin status and statistics:

GET /_ltr/_stats

{
"_nodes": {

"total": 1,
"successful": 1,
"failed": 0

},
"cluster_name": "es-cluster",
"stores": {

"_default_": {
"model_count": 10,
"featureset_count": 1,
"feature_count": 0,
"status": "green"

}
},
"status": "green",
"nodes": {

"2QtMvxMvRoOTymAsoQbxhw": {
"cache": {

"feature": {
"eviction_count": 0,
"miss_count": 0,
"hit_count": 0,
"entry_count": 0,
"memory_usage_in_bytes": 0

},
"featureset": {

"eviction_count": 0,
"miss_count": 0,
"hit_count": 0,
"entry_count": 0,
"memory_usage_in_bytes": 0

},
"model": {

"eviction_count": 0,
"miss_count": 0,
"hit_count": 0,
"entry_count": 0,
"memory_usage_in_bytes": 0

}
}

}
(continues on next page)
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}
}

You can also use filters to retrieve a single stat:

GET /_ltr/_stats/{stat}

Also you can limit the information to a single node in the cluster:

GET /_ltr/_stats/nodes/{nodeId}

GET /_ltr/_stats/{stat}/nodes/{nodeId}

4.9.8 TermStat Query

Experimental - This query is currently in an experimental stage and the DSL may change as the code advances. For
stable term statistic access please see the ExplorerQuery.

The TermStatQuery is a re-imagination of the legacy ExplorerQuery which offers clearer specification of
terms and more freedom to experiment. This query surfaces the same data as the ExplorerQuery but it allows the user
to specify a custom Lucene expression for the type of data they would like to retrieve. For example:

POST tmdb/_search
{

"query": {
"term_stat": {

"expr": "df",
"aggr": "max",
"terms": ["rambo", "rocky"],
"fields": ["title"]

}
}

}

The expr parameter is the Lucene expression you want to run on a per term basis. This can simply be a stat type,
or a custom formula containing multiple stat types, for example: (tf * idf) / 2. The following stat types are
injected into the Lucene expression context for your usage:

• df – the direct document frequency for a term. So if rambo occurs in 3 movie titles across multiple documents,
this is 3.

• idf – the IDF calculation of the classic similarity log((NUM_DOCS+1)/(raw_df+1)) + 1.

• tf – the term frequency for a document. So if rambo occurs in 3x in movie synopsis in same document, this is
3.

• tp – the term positions for a document. Because multiple positions can come back for a single term, review the
behavior of pos_aggr

• ttf – the total term frequency for the term across the index. So if rambo is mentioned a total of 100 times in
the overview field across all documents, this would be 100.

The aggr parameter tells the query what type of aggregation you want over the collected statistics from the expr.
For the example terms of rambo rocky we will get stats for both terms. Since we can only return one value you
need to decide what statistical calculation you would like.
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Supported aggregation types are: - min – the minimum - max – the maximum - avg – the mean - sum – the sum -
stddev – the standard deviation

Additionally the following counts are available: - matches – The number of terms that matched in the current
document - unique – The unique number of terms that were passed in

The terms parameter is array of terms to gather statistics for. Currently only single terms are supported, there is not
support for phrases or span queries. Note: If your field is tokenized you can pass multiple terms in one string in the
array.

The fields parameter specifies which fields to check for the specified terms. Note if no analyzer is specified
then we use the analyzer specified for the field.

Optional Parameters

• analyzer – if specified this analyzer will be used instead of the configured search_analyzer for each
field

• pos_aggr – Since each term by itself can have multiple positions, you need to decide which aggregation to
apply. This supports the same values as aggr and defaults to AVG

Script Injection

Finally, one last addition that this functionality provides is the ability to inject term statistics into a scripting con-
text. When working with ScriptFeatures if you pass a term_stat object in with the terms, fields and
analyzer parameters you can access the raw values directly in a custom script via an injected variable named
termStats. This provides for advanced feature engineering when you need to look at all the data to make decisions.

Scripts access matching and unique counts slightly differently than inside the TermStatQuery:

To access the count of matched tokens: params.matchCount.get() To access the count of unique tokens:
params.uniqueTerms

You have the following options for sending in parameters to scripts. If you always want to find stats about the same
terms (i.e. stopwords or other common terms in your index) you can hardcode the parameters along with your script:

POST _ltr/_featureset/test
{

"featureset": {
"features": [

{
"name": "injection",
"template_language": "script_feature",
"template": {

"lang": "painless",
"source": "params.termStats['df'].size()",
"params": {
"term_stat": {

"analyzer": "!standard",
"terms": ["rambo rocky"],
"fields": ["overview"]

}
}

}
}

]
}

(continues on next page)

42 Chapter 4. Contents



Elasticsearch Learning to Rank Documentation

(continued from previous page)

}

Note: Analyzer names must be prefixed with a bang(!) if specifying locally, otherwise
→˓it will treat the value as a parameter lookup.

To set parameter lookups simply pass the name of the parameter to pull the value from like so:

POST _ltr/_featureset/test
{

"featureset": {
"features": [

{
"name": "injection",
"template_language": "script_feature",
"template": {

"lang": "painless",
"source": "params.termStats['df'].size()",
"params": {
"term_stat": {

"analyzer": "analyzerParam",
"terms": "termsParam",
"fields": "fieldsParam"

}
}

}
}

]
}

}

The following example shows how to set the parameters at query time:

POST tmdb/_search
{

"query": {
"bool": {

"filter": [
{

"terms": {
"_id": ["7555", "1370", "1369"]

}
},
{

"sltr": {
"_name": "logged_featureset",
"featureset": "test",
"params": {
"analyzerParam": "standard",
"termsParam": ["troutman"],
"fieldsParam": ["overview"]

}
}}

]
}

},
"ext": {

"ltr_log": {
(continues on next page)
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"log_specs": {
"name": "log_entry1",
"named_query": "logged_featureset"

}
}

}
}

4.10 FAQ

This section contains answers to common issues that may trip up users.

4.10.1 Negative Scores

Lucene does not allow queries to have negative scores. This can be problematic if you have a raw feature that has a
negative value. Unfortunately there is no easy quick fix for this. If you are working with such features, you need to
make them non-negative BEFORE you train your model. This can be accomplished by creating normalized fields with
values shifted by the mininum value or you can run the score thru a function that produces a value >= 0.

4.10.2 I found a bug

If you’ve been fighting with the plugin it’s entirely possible you’ve encountered a bug. Please open an issue on the
Github project and we will do our best to get it sorted. If you need general support, please see the section below as we
will typically close issues that are only looking for support.

4.10.3 I’m still stuck!

We’d love to hear from you! Consider joining the Relevance Slack Community and join the #es-learn-to-rank channel.
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